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Abstract**. Let A be an n x n banded block Toeplitz matrix of bandwidth k with 
m x m blocks having entries in a field F. We present algorithms for computing p(A) = 
det(A - A) as well as the ratio p(A)/p'(A), where p'(A) is the first derivative of p(A) 
with respect to A, in roughly (3/2)k2 log n + 0(k3) block multiplications. If the field 
F supports FFT, then the cost is reduced to 0((m2k log k + m3k) log n + k3m3) scalar 
multiplications. The algorithms generalize an algorithm given by W. Trench for com- 
puting p(A) in the case m = 1 in roughly k log n + 0(k3) multiplications and rely on 
powering a companion matrix associated with the linear recurrence relation representing 
the original problem. 

1. Introduction. Toeplitz matrices, either with scalar entries or with blocks, 
arise in a variety of problems of Applied Mathematics; a wide literature deals with 
the problem of their inversion. Recently, some interest has been focused on the 
eigenvalue problem for banded Toeplitz matrices. In [1] and [2], spectral properties 
are expressed in terms of a suitable polynomial associated with a banded Toeplitz 
matrix A, and parallel algorithms have been devised for the computation of the 
characteristic polynomial p(A) = det(A - AI) at a point A as well as of the ratio 
p(A)/p'(A), where p'(A) is the first derivative of p(A). 

More recently, an algorithm for the computation of p(A) has been proposed by 
Trench [8]; its cost is roughly k log2 n + 0(k3) multiplications, where n is the di- 
mension of the matrix and k is its bandwidth. That algorithm works over any 
algebraically closed field (even though it was originally presented over the complex 
field), and it is assumed that the zeros of a suitable kth degree polynomial, associ- 
ated with the banded Toeplitz matrix, have been precomputed together with their 
multiplicities. 

In this paper we consider the eigenvalue problem for banded block Toeplitz ma- 
trices and present two new algorithms for the computation of p(A). The first algo- 
rithm, which is obtained dealing with the problem in terms of a linear difference ma- 
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trix equation by using block companion matrices, requires roughly (3/2)k2 log2 n + 
O(k3) block multiplications, works over any field and does not require any pre- 
computation of approximations to polynomial zeros. Moreover, if the ground field 
supports FFT, then we may reduce the cost to 0((m2k log k + m3k) log n + k3m3) 
arithmetic operations by using fast polynomial arithmetic, where m is the dimen- 
sion of the blocks. In the case of a tridiagonal block Toeplitz matrix the cost is 
given by 5 lg2 n - 3 block multiplications (observe that almost any banded block 
Toeplitz matrix can be considered as a tridiagonal block Toeplitz matrix having 
blocks of a suitable size). 

The second algorithm, based on a cyclic reduction method, applies to tridiagonal 
block Toeplitz matrices and computes p(A) in roughly 7 lg2 n block multiplications, 
requiring the nonsingularity of certain auxiliary matrices which must be inverted. 

Those algorithms approximate to the eigenvalues of the matrix A as zeros of its 
characteristic polynomial p(A). They can be combined with any rootfinding method 
which requires only values of p(A), but not its coefficients. 

Both our algorithms can be easily extended to the computation of p(A)/p'(A) at 
roughly double the cost, so that Newton's method can be efficiently applied to the 
equation p(A) = 0 for approximating the eigenvalues of the matrix A. 

The algorithms can be easily adapted to the computation of p(A) = det(A - AB) 
as well as of p(A)/p'(A), where A and B are banded block Toeplitz matrices, so that 
the generalized eigenvalue problem can also be treated. 

The paper is organized as follows. In Section 2 we describe the algorithm for 
computing p(A) by powering a companion matrix, in the scalar case. In Section 3 
we consider the computation of the ratio p(A)/p'(A); in Section 4 we extend the 
computations to the case of block matrices. In Section 5 the degenerate case is 
considered; in Section 6 we describe the algorithms based on cyclic reduction. 

2. Evaluation of the Determinant of a Banded Toeplitz Matrix. Let F 
be a field and A - AI be an (r + s + 1)-diagonal n x n Toeplitz matrix, 

~a074 a, ... a, 0 

a-, a0-X a, . a 

-= a-, ...a-, a-X a, ... a , EF, aieF, i=-r,...,s, 

a-, ... a-, ao-X a, ... as 

0 
ar ... a, a0-X a1 
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where a-r, ... , as E F, a-r, as 5 0. We consider the problem of computing p(A) = 
det(A - AI), that is, the value that the characteristic polynomial of A takes on at 
a point A. 

The assumption that (A, x) is an eigenvalue-eigenvector pair for A, that is, 

(2.1) (A-AI)x = O. x = (xi) $ O. 

is equivalent to the following linear system of equations 

a-r .. a-, a0-X a, as X r 

a1 a0-X a, ... . 

al -... a1 a0-Xa, ... as X+ 

=0, 
a ...a i a0- aX as. 

Xn-1 

a~r... a1 ao-X a1I 

a~r...a1, ao-X a1 . s X~- 

Xn,. ,-Xn+s-l=O. 

that is, to the following constant-coefficient homogeneous difference equations, 

(2.2) aSXi+k + a8,1Xi+k-1 + * * * + (ao - A)Xr+i + * * + arXi = 0, 

i =-r, -r +l,.n-r-l, as 40, k=r+s, 
with the "boundary" conditions 

(2.3) X-r, .. ., x.1 
= 0 (initial conditions), 

xn,... ,ixn+1 = 0 (terminal conditions). 

This fact was used by Trench [8] to give an explicit expression for det(A - AI) in 
the case where F is the complex field. The same result holds in the more general 
case where the field F has an algebraic closure G. The main idea of [8] is to express 
the general solution of (2.2) in terms of the zeros z1, .Z. , Zk E G of the associated 
polynomial 

k-1 

(2.4) jz+ 

y1=a 1aj2, j = 0 ..., k-1, j 5 r, Yr = asl(ao-A). 

If, for simplicity, we suppose that zi 5 zj, i 5 j, then the general solution of the 
difference equation (2.2) is given by [6, Section 7.2.9] 

k 

Xi = E aj14+r ajEG. j=1,...,k. 
j.=l 
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Moreover, A is an eigenvalue of A if and only if not all of the xi are zero, or, 
equivalently, if and only if not all of the aj are zero, since the row vector formed by 
xi equals the product of the row vector aj times a Vandermonde matrix. Imposing 
the boundary conditions (2.3) yields 

1 ... 1 (X1 

Zi ... Zk Xa2 

Z zkr- . =0, 

Z n+r ... Zk nz 

z n+k-l ...n+k-- 

that is, A is an eigenvalue of A if and only if det , = 0, where T,, is the k x k 
matrix of this last system. Trench shows that 

det(A - AI) = (-l)ns8an det Vn/det Vo, 

where Vo = (z.-1) is the k x k Vandermonde matrix associated with the zeros 
zj; he also extends this last equation to the case where the condition zi $ zj, 
i 5 j, is not satisfied. Observe that if the zeros zj are known, or if they can be 
easily approximated, then it is possible to compute p(A) in roughly k 10g2 n + 0(k3) 
multiplications. In this way, to approximate the eigenvalues of A as the zeros of 
p(A), it is possible to apply the secant method or any rootfinding method to the 
polynomial equation p(A) = 0, which uses only the values of p(A) at A. 

Now we present a different approach, which yields an algorithm for the evaluation 
of p(A) over an arbitrary field of constants F. That algorithm does not require to 
precompute approximations to the zeros of an auxiliary polynomial; furthermore, 
it enables us to extend the result to the case of block Toeplitz matrices and to 
compute the ratio p(A)/p'(A), which in turn allows us to apply Newton's method to 
the polynomial equation p(A) = 0 in order to evaluate the eigenvalues of the matrix 
A. 

First we observe that the matrix vector equation (2.1) is equivalent to the linear 
recurrence (2.2) with the boundary condition (2.3) and can be rewritten as follows: 
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Here, F is the k x k companion (Frobenius) matrix, 

-o 1 
0 1 

(2.6) F= 

L ~~~~~~~1 

a-j = laj-ri j = 0,...Ik - 1, j 54r, ^r =a-'(ao -A). 

Setting y = (X-r, X-T+1, ... , x81))T E Fk, we can rewrite (2.3) as follows, 

[IT I O]Y = 0 (initial conditions), 
[O I I8]Fny = 0 (terminal conditions), 

where F is defined by (2.6). Here and hereafter, Im denotes the m x m identity 
matrix, vT denotes the transpose of v. The second equation follows from (2.3) and 
(2.5) where i = n - r. Setting 

(2.7) [V I U] = [O I I8]Fn, 

we deduce that (2.1) is equivalent to 

[V U]Y=O'Y$O, 

that is, to the equation det U = 0, so the following relation holds: 

p(A) = 0 if and only if det U = 0. 

From this, we deduce the following result. 

PROPOSITION 2. 1. Let U be the right lower s x s submatrix of Fn; then for the 
characteristic polynomial p(A) of A we have 

(2.8) p(A) = (1) na ndetU. 

PROOF. First observe that (-l)np(A) is a monic polynomial of degree n; we 
show that (-l)n(8+l)an det U is also a monic polynomial of degree n, that is, the 
term of det U having the highest degree in A is (-1)n(8+l) Ana-n. For this purpose, 
let Uq, q = 1, 2, ... , n, denote the s x s right lower submatrix of Fq in which the 
entries not contributing to the term of the highest degree in A are set to zero. Then, 
if g and e are natural numbers such that q = gs + e, e < s, we have that 

Uq = 

[(-a1)g+1Ie ?lI 

The last equation is trivial for q = 1 and is easily verified by induction on q, using 
the relation 

Fq+- = FFq = HFq + jkgTJFq 

where H = (hij), hi,i+l = 1, hij = 0 otherwise, ik is the last column of Ik and 
_gT ('yot * n-i) (Indeed, HFq is obtained by shifting upwards the rows of 
F , and the highest-degree entry of the matrix ikgTFq is (Aas1)9+l, in the last 
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row and in the (r + e + 1)st column. Therefore, the term of highest degree in det U 
is given by 

det U, = (-l)n(8+l))Ana-n. 

Now, (2.8) follows if p(A) has pairwise distinct zeros, since 

(-l)np(A) and (-l)n(8+'l)andetU 

are both monic polynomials and have n distinct common zeros. The result is 
immediately extended via a continuity argument to the case where p(A) has multiple 
zeros. 5 

We will also need the following 

PROPOSITION 2.2. If A(z) = Zn mod p(z), then X(F) = Fn. 

Proposition 2.2 immediately follows from the well-known fact [6, p. 325] that 
the polynomial (2.4) is the minimal polynomial of the Frobenius matrix F, that is, 

p(F) = 0. 
Now we are ready to present the following algorithm for the evaluation of p(A), 

which, for simplicity, will be described under the assumption that n = 2h, h integer. 

Stage 1. Compute the coefficients of the polynomial 

k-1 

+(z) = E atizi = zn mod p(z), 
i=O 

by using the repeated squaring technique: 

(2.9) 00 = z, 0j+1 = Oi2 mod po(z), i = 0, . .., h -1, h 109o2 n, O h = A 

Stage 2. Compute the matrix 

U = [? I I,]Fn [I] [? I I8]l(F) [Is 

by means of Horner's rule, 

U =CeoL + (ajL + (+ (aek-2L + ak-,LF)F) ..)F [ 
0 

where L = [0 II] is a s x k matrix, according to the following steps: successively 
compute 

Y1 = Cek-l 

(2.10) Yi= (Cek-L + YiF), i = 2, ... 1, 

U =Yk[2] 

Stage 3. Compute (-1)n8an det U. 

If we compute over the field of complex numbers or over any other field that 
supports FFT, we may use fast polynomial arithmetic in order to multiply and 
divide a pair of kth degree polynomials in O(k log k) arithmetic operations (see [3]); 
in that case, the cost of the algorithm is O(k log k log(n/k) + k3) multiplications. 
On the other hand, we may apply customary polynomial arithmetic with the cost 
of roughly (3/2)k2 log(n/k) + 0(k3) multiplications. 
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For comparison, the method given in [8] evaluates p(A) as follows. 

Stage 1. Compute all the zeros z1,... , Zk of P(z) together with their multiplici- 
ties. 

Stage 2. Compute a k x k Vandermonde-like matrix Vn depending on the mul- 
tiplicities of the zeros. If zi :A zj for i :A j, this matrix has elements zj for 

i-O . .,r-1and Z'^+i for i = r, . . ., r + s -1 3~~~~~~~~~~~~~~~~~~~~~~ 
Stage 3. Compute (-1) 8aan det Vn/det Vo. 

The cost of this method is given by k lg2 n+?O(k3) multiplications, not counting 
the cost of Stage 1, which can be rather large, particularly in the case of clustered 
zeros (estimated in [5]). This is less than the cost of our algorithm by a factor of 
log k, if we compute over fields supporting FFT, and by a factor of k otherwise. 

The new approach yields a "rational" algorithm, that is, an algorithm which does 
not compute any approximations to polynomial zeros and thus, in exact arithmetic, 
delivers the exact result in a finite number of arithmetical operations. Moreover, 
this method can be slightly modified in order to deal with block matrices and to 
compute the ratio p(A)/p'(A), where p'(A) is the first derivative of p(A) with respect 
to A. These two generalizations are the subject of the next three sections. 

3. Evaluation of the Ratio p(A)/p'(A). In order to evaluate the eigenvalues 
of A, applying Newton's method to the polynomial equation p(A) = 0, we must 
compute the quotient p(A)/p'(A). From (2.5) and (2.8) we deduce the equation 
p'(A)/p(A) = (det U)'/(det U). Recall that 

(det U)' = E a dj = trace((Adj U)U'), 

where U' = (uNj), u/j = duij/dA, and Adj U = U-1 det U is the adjugate matrix of 
U. Consequently, 

(3.1) (det U)/(det U)' = 1/trace(U 1U'). 

Thus, we essentially reduced the problem to computing U1 and U', the s x s 
lower right submatrices of Fn and (Fn)'. Since Fn = Op(F), where 

k-1 

( = zi =z"modp(z), 
i=O 

and p(z) = p(z, A) is defined by (2.4), we have the relation 

k-1 k-1 

(3.2) (F )' = a oFP + ci(Fi)' 
i=O i=O 

so that 

k-i k-1 

(3.3) U'=G+H, G=L F[2I, E [0] 

where L = [0 I I,]. 
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Next we will show how to compute simultaneously H and U. Observe that 

k-1 k-1 k-1 

E ai(F) E = i F-(F 1F)/ = E 1(F'-1F' + (F- 1)'F) 
i=O i i=1 

k-1 k-1 k-1 k-2 

ZejFtlF1 + a i(F'-)'F = EceF-1F'F+ E a (F')IF 
i~l i=i i=i i=O 

Setting Yi = L z &k~i+j__Fj-l and Zi = LE; &ki+j(F3), we get the 
relations 

Y= Lak-1, Z1 = Lak-1, 

(3.4) Y = YzF + Lak-i, Z2 = Y.1F' + Z._F, i = 2,3, ... , ki 

H = Zk [2] U Yk[Is] 

It remains to compute the first term in the right-hand side of (3.2). Rewrite 

(2.9) as follows, 

to0 = Z, 

Oi2 = Qip + Oi+l, i = O. . .. ,h-1, h = 192n, 

'Oh = + (Z), 

where p = p(z). Taking the derivatives with respect to A, we obtain that 

So =0, 

2Oj)V~ = Qi p + Qj p' + O/l i = O1.. *I* h - 1 

Oh = +. 

Since p' = -zT, we have that 204iP + QjzT = Qio + Oi+ (that is, 4+ = 

2IiOi + QjxT mod Ap). Therefore, the derivative with respect to A of the polynomial 

(z) can be evaluated together with O(z) using the following equations: 

0o=z, f0=O, 

(3.5) =QQi? ++i+l 
20~io'~ + ZrQ, = Ql p + Pi+1 

The entire algorithm consists of the following stages. 

Stage 1. Compute the coefficients of the polynomial O(z) and of its derivative 

with respect to A by means of (3.5). 

Stage 2. Compute the matrices U and H by means of (3.4). 

Stage 3. Compute the matrix G, the s x s right lower submatrix of +'(F), by 

using Horner's rule. 
Stage 4. Compute the s x s right lower submatrix U' of (Fn)' by means of (3.3). 

Stage 5. Compute trace(U-iU/). 

In view of the structures of the matrices involved, the computational cost of the 

above algorithm for the evaluation of p(A)/p'(A) is roughly twice the cost of the 

algorithm for the evaluation of p(A), shown in Section 2. 
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4. The Case of Block Matrices. Let 

AO-XI A1 ... As 

A1 A0-XI A1 ... As 

A-XI =s 

0 
A .. . Ao A-,XI A1 

be an n x n block Toeplitz matrix with m x m blocks Ai, i =-r, ... , s. We consider 
the problem of computing p(A) = det(A - AI) and the ratio p(A)/p'(A). 

We need to recall some definitions and properties of matrix polynomials (see [4, 
Chapter 7]). 

Consider an m x m matrix A(z) = (aij(z)) such that 
9 

aij(Z) = aq) Zq 
q=O 

are polynomials in z over F of degree at most g. Then we can write 
9 

A(z) = EAqzq, 
q=O 

where Aq = (a(q)) are m x m matrices with elements in F, and the matrix A(z) is 
called an m x m matrix polynomial. 

If F is a given (mh) x (mh) matrix, then we can define the right value of A(z) 
at F as the matrix 

9 

A(F) = E(Ih 0) Aq)Fq, 
q=O 

where Ih 0 B = diag(B, B, .. ., B) denotes an h x h block diagonal matrix. For 
simplicity, throughout the paper we will use the expression 

9 

A(F) = EAqFq 
q=O 

to denote the right value A(F). 
Given the m x m matrix polynomials 

P d 

P(Z) = E Pizi, D(z) = E Diz, 
i=O i=O 

such that Dd is nonsingular, there exists a unique pair of m x m matrix polynomials 
Q(z) and R(z) such that degree(R(z)) < d and 

P(z) = Q(z)D(z) + R(z); 
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Q(z) is said to be the right quotient and R(z) is said to be the right remainder of 
the division of P(z) by D(z). 

We observe that the evaluation of the right quotient and of the right remainder 
of the division of two matrix polynomials can be performed using known standard 
algorithms for conventional polynomial division (see [3]), replacing the coefficients 
with block matrices. 

We will use the following two propositions: 

PROPOSITION 4. 1. Let Q(z) and R(z) be the right quotient and remainder 
of the division of the m x m matrix polynomials P(z) by D(z) and let F be a 
(pm) x (pm) matrix such that the right value D(F) is the null matrix. Then P(F) = 
R(F). 

Proof. We cannot simply substitute z = F into the matrix equation P(z) = 

Q(z)D(z) + R(z), for the products of the coefficients of P(z), Q(z), D(z), R(z) 
with F do not commute. With a bit more caution, however, from the relation 

p-d 

P(z) = Q(z)D(z) + R(z) = E QiD(z)z2 + R(z), 
i=o 

where Q(z) = EI~p1d QiZi, we deduce that P(F) = IPp-d QiD(F)Fi+R(F), whence 
P(F) = R(F). n 

PROPOSITION 4.2. Let Q(z) and R(z) be the right quotient and remainder of 
the division of the matrix polynomials IzP by D(z), respectively, that is, 

(4.1) IzP = Q(z)D(z) + R(z), 

and let S(z), T(z) be the right quotient and remainder of the division of (R(z))2 
by D(z), that is, 

(4.2) (R(z))2 = S(z)D(z) + T(z). 

Then T(z) is the right remainder of the division of Iz2P by D(z), i.e., there exists 
a matrix polynomial U(z) such that Iz2p = U(z)D(z) + T(z) (here and hereafter, I 
denotes the identity matrix of appropriate size). 

Proof. From (4.1) we obtain that 

(R(z))2 = (IzP - Q(z)D(z))2 = 1Z2P + Q(z)D(z)Q(z)D(z) - 2Q(z)D(z)zP. 

Therefore, from (4.2) we get 

IZ2P = 2Q(z)D(z)zP - Q(z)D(z)Q(z)D(z) + S(z)D(z) + T(z), 

whence, 

IZ2p = (2Q(z)zP - Q(z)D(z)Q(z) + S(z))D(z) + T(z). 5 

Similarly to the scalar case, the assumption that (x, A) is an eigenpair of A, that 

is, (A-AI)x = 0, x :$ 0, where x = (xi), xi E Fm, i = 1, 2, .. ., n, is a block vector, 
can be rewritten as the following matrix difference equation of order k = r + s with 
constant coefficients (see [4, p. 512]), 

A8Xi+k + As-lXi+k-1 + * + (Ao - AI)xr + + A rxi = O0 

i=-r,-r+1,..., n-r-1. 
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This equation is complemented-with the following "boundary conditions" 

(4.3) X-r,... ,X-1 = 0 (initial conditions), 
(4.4) xn, . .. .,xn+8-1 = 0 (terminal conditions). 
If A. is nonsingular (the singular case is dealt with in Section 5), the above matrix 
difference equation is equivalent to 

(4.5) Gsxj+k + Gs-1Xj+k-1 + + G-rXj =0, 

where Gi = As1Ai-r, i = 0,..., k, i : r, Gr = A` (AO -AI), so that Gk = I- 
Now the matrix difference equation (4.5) with constant coefficients can be rewritten 
equivalently as follows, 

Xi X-r 
=Fr+i [X 3, i =-r,-r+ 1. 

L Xi+k- 1 1 _X8-1 

Here, F denotes the k x k block companion matrix, compare (2.6), defined by 
-o I 

0 I 

(4.6) F = 

-Go -G1 -Gk-1 

Moreover, from (4.3) and (4.4), we conclude that the equation det(A - AI) = 0 
is equivalent to det U = 0, where [V I U] = [O I Ism]Fn. The same argument as in 
the scalar case enables us to prove that det U is a polynomial in A of degree nm 
whose term of the highest degree in A is given by 

det [Ie 0 (AA- 1)g+1 1 

Here, g and e are natural numbers such that n = gs + e, e < s. Therefore, we 
get the following block version of Proposition 2.1, which has also been proved by 
Tismenetsky [7], using the spectral theory of matrix polynomials. 

PROPOSITION 4.3. Let U be the right lower s x s block submatrix of the block 
Frobenius matrix Fn. Then for the characteristic polynomial p(A) of A we have 

p(A) = (-1)n8(detA,)ndet U. 

Next consider the m x m matrix polynomial 40(z) = Go + G1z + + Gkzk 
associated with the matrix linear difference equation (4.5). Similarly to the scalar 
case, we deduce that its right value taken on at F is the null matrix, that is, 

k 

?(F)= E(Im, Gi)F2 = 0. 
i=O 

Therefore, by virtue of Propositions 4.1 and 4.2 it is possible to compute Fn by 
means of the repeated squaring technique, 

o = Z. 

j+j = Tjmod 10(z), i = 01 1...Ih - 1, h =logn, 

Fn = Th(F). 
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Here, the polynomial @(z) mod 1(z) denotes the right remainder of the right di- 
vision of @1(z) by 1(z). Thus, the algorithm for the evaluation of det(A - A), 
described in Section 2, still applies to the case of block matrices in the following 
form. 

Stage 1. Compute the matrices E(, the coefficients of the matrix polynomial 

k-1 

2(z) = z' mod 4)(z), S(z) = E<izt 
i=O 

by using the repeated squaring technique 

TO = Z, Qi+l = @T2 mod 4D(z), i = O. .. ., h -1, h = 1092 n, Ah = Q- 

Stage 2. Compute the matrix 

U = [O I I]Fn KI ]= [01 I ]'Ti(F) K] 

by means of the "right" Horner's rule 

U = e9oL?+ (1L(+ (+ (e6k2L e+k-lLF)F)...)F LI1 

where L = [0 I I,] is an s x k matrix; that is, perform the following steps: 

Y1= Ek-lL, 

Yi = (E9k-7L + Y?,-,F), i = 2, ... ., k, 

U=Yk 2] 

Stage 3. Compute p(A) (-1)n8(detA,)n detU. 

It is possible to show that the cost of the algorithm is 

O((m2k log k + m3k) log(n/k) + m3k3) 

multiplications if fast polynomial arithmetic is used, and O(m3k2 log(n/k) +m3k3) 
multiplications if customary polynomial arithmetic is used. 

In a similar way, it is easy to prove that the algorithm for the evaluation of 
p(A)/p'(A), described in Section 3, still applies in the case of block matrices, and 
its computational cost is roughly doubled with respect to the cost of the evaluation 
of p(A). 

For example, consider the case of the block tridiagonal matrix 

AO Al 
0 

A-1 Ao Al 

A= 

0 
A-1 Ao A1 

A-1 Ao0 
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and for simplicity, assume A = 0. Then the bandwidth is k = 2. Setting B = 

A-A,1, C = Al1Ao, we have 

4(x) = 1x2 + Cx + B, 

T = X2 (mod D(x)) = -Cx - B, 

Tj+j = T? (mod (D(x)) = Ci+lx + Bj+j, i = 1, . .., h -1, h = 1092 n. 

Since 

(Cix + B )2 (mod D(x)) = CiX2 + (CiBi + BiCj)x + B? (mod ID(x)) 

= (C03Bi + B2Ci - C2C)x + (B2 - ?B) 

we have the relations 

C2i+i=-CC+C% B +BiCi, i=1,..,h-1, h=log2n. 

(4.7) Bi + = Bi - C2B, 

C, =-C, B1 =-B. 

For each i we can compute Ci+,, B~i+ (given C, B, Ci, Bi) in five matrix 
multiplications, using (4.7) and the equation 

C0Bi + BiCi = (Ci + Bi)2 -B2 _ C2. 

Now, recall that Fn = (Im 0 Ch)F + (Im 09 Bh)I, so that 

U = -ChC + Bh, 

see (4.6). 
This means that the overall cost of computing U is not greater than the cost of 

5 lg2 (n/2) + 1 matrix multiplications or m3 (5 1g2 (n/2) + 1) scalar multiplications. 

5. The Degenerate Case. When we evaluated the characteristic polynomial 
of the block Toeplitz banded matrix in Section 4, we have assumed that the block 
A, is nonsingular. In that case, it is possible to reduce the original matrix difference 
equation to the form (4.5) and to solve that equation via powering the companion 
matrix (4.6). In this section we consider the case where det A, = 0. 

Suppose we are given the matrix difference equation 

(5.1) Asxj+k + A8_1xj+k-1 + + A-rxj = O j = -r, ... , n - r - 1, 

with boundary conditions 

(5.2) xri ... Xx1 = ? 

(5.3) Xni ... . Xn+8-1 = 0, 

where the matrix A8 is singular. We may assume, without loss of generality, that 

where B8 is a q x m full-rank matrix, q < m; otherwise, consider a nonsingular 
m x m matrix M such that 

MA = B[ 
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and replace (5.1) with MAxj+k + MAlxj+k-l + + MA-rXj = 0, j = 

-r, ... ,n - r-1. 
Now partition the matrix Ai such that 

i [Ci]' 

where Bi is a q x m matrix, so that (5.1) can be split into two equations, 

BsXj+k + Bs XlXj+k-1 + k1+ B+ rXj O, j=-r, ..., n-r-l , 

Csg1lXj+k-1 + + C-rXj =0, j -r, ...,n-r- 1. 

These equations are equivalent to the following system, 

EsXj+k + Es_1Xj+k-1 + + E-rXj=0 j =-r, ..., n-r-2, 

C0.-1X8.-1 + * + C-rX-r = 01 

BgXn+89 + +1 + B-rXn-r-i = 0, 

where 

E 
,i 

i =-r, ... , 8, C-r-1 = 0. 

Assuming E, nonsingular (if E, were singular, we would apply this technique 
again to the above matrix difference equation), we can express xi in terms of the 
block companion matrix 

O I 
0 I 

F = ,Gi =-ES lEi-ri i = O ... Ik-1, 

-Go -G1 -Gk1 

by means of the relations 

Xj+1 X-r 

(5.4) Fr+j+, j =-r,-r + 1,..., n-r-2, 

Xj+k I x,9.1 . 

(5.5) Cs01xs-1 + * + C-rX-r =? 

(5.6) Bsxn+ 981 + + B-rxnr- 1 = 0. 

(5.4) implies that 

Xn-r-1 X-r 

= Xn-1 

LXn-4.,-r J -x..R I1 
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Using this last equation and the boundary condition xn+,-, = 0 from (5.3), we 
may rewrite (5.6) equivalently as follows, 

[B-r . Bs]Fn [7 =0. 

Then (5.5), (5.6) and the boundary conditions xn,. .. ,Xn+8r = 0 from (5.3) can 
be put into the following form, 

C-r Cs- 1 X-r 

W-r ..Ws_ . = OX 

U_r Us-i _ X'9- _ 

where 
[W-r. W,9i] = [B-r B9l]Fn-1 

[U-r . Us1] = [0 Im(sl)]F-1. 

We substitute (5.2) and arrive at the following homogeneous matrix-vector equa- 
tion with the square coefficient matrix W, 

[Co Cs-1 Xo 

Wo ...Ws- jJ =0. 

This equation has a nontrivial solution if and only if det W = 0. Thus we may 
reduce the solution of the original problem to computing W and det W for a fixed 
A. 

6. A Different Approach Based on Cyclic Reduction. In this section we 
will examine a different method for computing det(A - AI) when the matrix A is 
a block tridiagonal Toeplitz matrix. Observe that this case is quite general, since 
almost any (block) banded Toeplitz matrix can be considered as a block tridiagonal 
Toeplitz matrix, with blocks of suitable dimension. This method requires nonsin- 
gularity of certain matrices which we need to invert, but it does not require the 
nonsingularity of the upper diagonal block. Suppose we are given the following 
n x n block matrix, where n = 2h - 1, 

E G 

H EG 
H E 
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In this case it is possible to apply a cyclic reduction method to compute 
det(A - AI). Observe that permuting block rows and block columns of the 
n x n block matrix A - AI according to the permutation (1,3, 5, .. ., 2h - 1, 2,4, 
6,. . ., 2h - 2), yields the matrix 

L G 
L H G 

HG 
(6.1) P(A-XI)PT=A n= L H L=E-MI, 

H G L 
H G L 

L ~ H G LJ 

where P is the permutation matrix defining the above permutation. 
Moreover, if det L $ 0, we may perform one step of block Gaussian elimination 

and write 

I L G 
I 

~~0L H G.* 
* ~~~~~~~~HG 

A n= L L H 

L ~H*G* I JLHI L1 

where H* - HL-1, G* = GL-1, and 

L= L - (HL-1G + GL-1H), 

G1 = -GL-1GC 

H1 =-HL-1H. 

Therefore, det(An - A) = det A* = (det L) (n+l)/2 det(A(n+l)/21- AI), 

L1 GC 
H1 L1 G1 0 

A(n+l)/?-l 
= 

0 

Now, if L1 is nonsingular, the same process can be applied to A(n+l)/2-l and 
so on. We arrive at the following relations, 

(6.2) detA* = (det Lo) (detLi) (detLh2) detLhl, 

Li+i = Li-(HiL lGi + GiLilHi)} 
(6.3) Gi+1 = -GiL1CGi i = 0,... ,h - 2, 

Hz+,= -HiL71H) 

Lo = L, Ho = H, Go =G, 

provided that all matrices Li are nonsingular. 
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The cost of this process is one matrix inversion and six matrix multiplications 
in each step of the evaluation of Li, Gi, Hi; moreover, the cost of evaluating h 
determinants should be added. The overall cost is roughly 

(22/3)m3 log2 (n + 1) 

scalar multiplications. 
Observe that the cost of this algorithm is higher than the cost of the algorithm 

described in Section 5, which required roughly 5m3 log2 (n/2) multiplications. Note, 
however, that the approach of this section can be applied even when G and H are 
singular, provided that all Li are nonsingular. 

In order to compute the ratio p(A)/p'(A) for performing one step of Newton's 
method, we deduce from (6.1) and (6.2) that 

p'(A)/p(A) = 2h-1(det Lo)I/(det Lo) + 2h-2(det Li)I/(det Li) 
+ + (det Lh-l)'/(det Lhl). 

Since (det B)'/(det B) = trace(B-1B'), for any nonsingular matrix B, it follows 
that 

p'(A)/p(A) = 2h-1 trace(L 1Lo) + 2h-2 trace(L 1L') + + trace(L- 1LI -1). 

The evaluation of the matrices LV can be carried out together with the evaluation 
of Li by means of the following formulae obtained by taking derivatives of (6.3) with 
respect to A: 

Li+1 =LI - (HiL-1Gi + HiLi1Gi + Hi(L71)'Gi 
+ G'L7-1Hi + GiL-1Hi' + Gi (L7-1)'Hi) 

GI~l= -(GiL7-Gi + GiL7-Gi + Gi(L-1)'Gi) , ,.,h- 
Hi'+ = -(HiL7-Hi + HiL7-Hi' + Hi(L-1)'Hi) 

L' = I, G = O, Ho'= . 

Here (L-1)' can be computed using the formula 

(L 1 )' = _t-L71(Li )'L-1 
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